Some remarks about flows of Hilbert-Schmidt operators

نویسندگان

  • Benjamin Boutin
  • Nicolas Raymond
چکیده

This paper deals with bracket flows of Hilbert-Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Some Remarks about Almost Semi-hyponormal Operators

We define the class of almost semi-hyponormal operators on a Hilbert space and provide some sufficient conditions in which such operators are almost normal, that is their self-commutator is in the trace-class. Mathematics Subject Classification: 47B20

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

The Fuglede Commutativity Theorem modulo the Hilbert-schmidt Class and Generating Functions for Matrix Operators. I

We prove the following statements about bounded linear operators on a separable, complex Hilbert space: (1) Every normal operator N that is similar to a Hilbert-Schmidt perturbation of a diagonal operator D is unitarily equivalent to a Hilbert-Schmidt perturbation of D; (2) For every normal operator A', diagonal operator D and bounded operator X, the Hilbert-Schmidt norms (finite or infinite) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017